894 research outputs found

    Fibroblast proliferation and migration in wound healing by phytochemicals: Evidence for a novel synergic outcome

    Get PDF
    Wound-healing is a dynamic skin reparative process that results in a sequence of events, including inflammation, proliferation, and migration of different cell types as fibroblasts. Fibroblasts play a crucial role in repairing processes, from the late inflammatory phase until the fully final epithelization of the injured tissue. Within this context, identifying tools able to implement cell proliferation and migration could improve tissue regeneration. Recently, plants species from all over the world are coming out as novel tools for therapeutic applications thanks to their phytochemicals, which have antioxidant properties and can promote wound healing. In this paper, we aimed at investigating antioxidant activity of waste extracts from different medicinal plants, endemic of the Mediterranean area, on fibroblast proliferation and wound healing. We determined the amount of total phenols and anti-oxidant activity by ABTS assay. We then evaluated the cytotoxicity of the compounds and the proliferative capabilities of fibroblasts by scratch assay. Our results showed that waste extracts retain antioxidant and regenerative properties, inducing tissue re-establishment after environmental stress exposure. Taken together, our findings suggest that waste material could be used in the future also in combinations to stimulate wound healing processes and antioxidant responses in damaged skin

    Indoor exposure to environmental tobacco smoke and dampness: respiratory symptoms in Sardinian children- DRIAS study

    Get PDF
    Indoorexposuresathome,environmentaltobaccosmoke(ETS)andmould/dampnessadverselyaffect respiratoryhealthofchildren.DisturbiRespiratorinell’InfanziaeAmbienteinSardegna(DRIAS) (RespiratorySymptomsinchildrenandtheEnvironmentinSardegna,Italy)aimsatrelatingthe prevalenceofrespiratoryandallergicsymptomstoindoorexposuresinSardinianchildren. DRIAS,across-sectionalinvestigationofrespiratorysymptoms/diseases,usedamodifiedversionof ISAACquestionnaire,included4122childrenattending29primaryschoolsintheschoolyear 2004–2005. If bothparentssmoketheprevalenceforcurrentwheezeandcurrentasthmaisalmostdoubledin comparisonwithneversmokers,forpersistentcoughandphlegmaroleissuggestedwhenonlymother smokes.Amongmotherssmokinginpregnancy,theprevalenceofcurrentwheezeandcurrentasthmais increased. ExposuretoETSandfamilyatopyhaveajointeffectresultinginanalmosttriplingof prevalenceforcurrentwheezeandmorethanfourtimesforcurrentasthma.Exposureto‘‘dampness’’ (mouldordampness)bothduringthefirstyearoflifeandcurrentlyisassociatedwithincreased prevalenceofcurrentwheeze,persistentcoughorphlegmandcurrentrhino-conjunctivitis;ifexposure is onlyduringthefirstyearoflifeadoublingormoreofprevalenceisobservedforcurrentwheeze, current asthma,andpersistentcoughorphlegm. DRIASresultsaddevidencetothecausalroleofchildhoodexposuretoETSinthedevelopmentof respiratorysymptoms(cough,phlegm,andwheezing)andasthma.ThejointeffectofETSandfamily atopyiscorroborated.Theresultsstrengthentheevidenceforacausalassociationbetween‘‘dampness’’ and respiratoryhealth,pointingtoitspossibleindependentroleincausingasthma,along-lasting exposureentailsadoubledprevalenceforbothasthmaticandbronchitissymptoms

    Sterol 3β-glucosyltransferase biocatalysts with a range of selectivities, including selectivity for testosterone

    Get PDF
    The main objectives of this work were to characterise a range of purified recombinant sterol 3β-glucosyltransferases and show that rational sampling of the diversity that exists within sterol 3β-glucosyltransferase sequence space can result in a range of enzyme selectivities. In our study the catalytically active domain of the Saccharomyces cerevisiae 3β-glucosyltransferase was used to mine putative sterol 3β-glucosyltransferases from the databases. Selected diverse sequences were expressed in and purified from Escherichia coli and shown to have different selectivities for the 3β-hydroxysteroids ergosterol and cholesterol. Surprisingly, three enzymes were also selective for testosterone, a 17β-hydroxysteroid. This study therefore reports for the first time sterol 3β-glucosyltransferases with selectivity for both 3β- and 17β-hydroxysteroids and is also the first report of recombinant 3β-glucosyltransferases with selectivity for steroids with a hydroxyl group at positions other than C-3. These enzymes could therefore find utility in the pharmaceutical industry for the green synthesis of a range of glycosylated compounds of medicinal interest

    Isolating stem cells from skin: designing a novel highly efficient non-enzymatic approach

    Get PDF
    Stem cells are undifferentiated elements capable to acquire a specific cellular phenotype under the influence of specific stimuli, thus being involved in tissue integrity and maintenance. In the skin tissue self-renewal and wound healing after injury is a complex process, especially in adulthood, due to the aging process and the continuous exposure to damaging agents. The importance of stem cells in regenerative medicine is well known and defining or improving their isolation methods is therefore a primary and crucial step. In the present paper we present a novel method to isolate stem cells from human skin, including the involvement of a novel medium for the maintenance and expansion of in vitro cultures. The biopsies were mechanically digested and put in culture. The migrating cells were positive selected with magnetic cell sorting, characterized by flow-cytometry analysis, and viability detected by MTT assay. Cells exhibited a mesenchymal phenotype, as demonstrated by the positive acquirement of an osteogenic or adipogenic phenotype when cultured in specific conditioned media. Taken together our results disclose a novel method for culturing and expanding stem cells from skin and pave the way for future clinical applications in tissue regeneration

    Epigenetics, stem cells, and autophagy: Exploring a path involving miRNA

    Get PDF
    MiRNAs, a small family of non-coding RNA, are now emerging as regulators of stem cell pluripotency, differentiation, and autophagy, thus controlling stem cell behavior. Stem cells are undifferentiated elements capable to acquire specific phenotype under different kind of stimuli, being a main tool for regenerative medicine. Within this context, we have previously shown that stem cells isolated from Wharton jelly multipotent stem cells (WJ-MSCs) exhibit gender differences in the expression of the stemness related gene OCT4 and the epigenetic modulator gene DNA-Methyltransferase (DNMT1). Here, we further analyze this gender difference, evaluating adipogenic and osteogenic differentiation potential, autophagic process, and expression of miR-145, miR-148a, and miR-185 in WJ-MSCs derived from males and females. These miRNAs were selected since they are involved in OCT4 and DNMT1 gene expression, and in stem cell differentiation. Our results indicate a difference in the regulatory circuit involving miR-148a/DNMT1/OCT4 autophagy in male WJ-MSCs as compared to female cells. Moreover, no difference was detected in the expression of the two-differentiation regulating miRNA (miR-145 and miR-185). Taken together, our results highlight a different behavior of WJ-MSCs from males and females, disclosing the chance to better understand cellular processes as autophagy and stemness, usable for future clinical applications

    Transapical off-pump echo-guided mitral valve repair with neochordae implantation mid-term outcomes

    Get PDF
    Background: The NeoChord echo-guided transapical beating heart repair is a promising early-stage minimally invasive surgical procedure for degenerative mitral valve (MV) regurgitation (DMR) correction. The technique has been improved since its inception following procedure standardization, patient selection optimization, and learning curve stabilization. We hereby present the mid-term clinical results through three years of our large single center experience. Methods: All consecutive patients with severe symptomatic DMR due to prolapse or flail of one or both mitral leaflets that underwent the NeoChord procedure between November 2013 and June 2019 were included. Patients were categorized according to MV anatomy; Type A isolated central posterior leaflet prolapse and/or flail, Type B posterior multi-segment prolapse and/or flail, Type C anterior and/or bi-leaflet prolapse or flail, Type D paracommissural prolapse and/or flail and/or significant leaflet and/or annular calcifications. Patients underwent clinical and echocardiographic follow-up at one, three, six, twelve months and yearly thereafter. Clinical outcomes and the composite primary endpoint (patient success) were defined according to Mitral Valve Academic Research Consortium (MVARC) criteria. Mitral regurgitation (MR) severity was graded as absent, mild, moderate and severe according to American Society of Echocardiography (ASE) and European Society of Cardiology (ESC) guidelines. Results: Two hundred and three patients were included; median follow-up was 24 months [interquartile range (IQR), 9–36]. Median age was 64 years (IQR, 54–74 years), median Society of Thoracic Surgeons (STS) Predicted Risk of Mortality (PROM) was 0.60% (IQR, 0.32–1.44%). There were 106 Type A patients (52.2%), 68 Type B (33.5%), 16 Type C (7.9%), and 13 Type D (6.4%). Kaplan-Meier estimate of survival was 99.0%±0.7% at one and two years and 94.0%±2.9% at three years. At one-year follow-up patient success was 91.2%±2.0% and 111 patients (74%) presented a residual MR mild or less (1+). At three-year follow-up patient success was 81.2%±3.8% and 32 patients (64%) had a residual MR mild or less (1+). Patient success was significantly different according to anatomical type (P=0.001). Echocardiographic analysis showed a significant acute left ventricle and left atrial reverse remodeling that was maintained up to three years. Conclusions: The NeoChord echo-guided transapical beating heart repair procedure demonstrated good clinical outcomes and echocardiographic results up to three-year follow-up

    Smart nanofibers with natural extracts prevent senescence patterning in a dynamic cell culture model of human skin

    Get PDF
    Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging

    Definition of the Prognostic Role of MGMT Promoter Methylation Value by Pyrosequencing in Newly Diagnosed IDH Wild‐Type Glioblastoma Patients Treated with Radiochemotherapy: A Large Multicenter Study

    Get PDF
    Background. O6‐methylguanine (O6‐MeG)‐DNA methyltransferase (MGMT) methylation status is a predictive factor for alkylating treatment efficacy in glioblastoma patients, but its prognostic role is still unclear. We performed a large, multicenter study to evaluate the association between MGMT methylation value and survival. Methods. We evaluated glioblastoma patients with an assessment of MGMT methylation status by pyrosequencing from nine Italian centers. The inclusion criteria were histological diagnosis of IDH wild‐type glioblastoma, Eastern Cooperative Oncology Group Performance Status (ECOG‐PS) ≤2, and radio‐chemotherapy treatment with temozolomide. The relationship between OS and MGMT was investigated with a time‐dependent Receiver Operating Characteristics (ROC) curve and Cox regression models. Results. In total, 591 newly diagnosed glioblastoma patients were analyzed. The median OS was 16.2 months. The ROC analysis suggested a cut‐off of 15% for MGMT methylation. The 2‐year Overall Survival (OS) was 18.3% and 51.8% for MGMT methylation <15% and ≥15% (p < 0.0001). In the multivariable analysis, MGMT methylation <15% was associated with impaired survival (p <0.00001). However, we also found a non‐linear association between MGMT methylation and OS (p = 0.002): median OS was 14.8 months for MGMT in 0–4%, 18.9 months for MGMT in 4–40%, and 29.9 months for MGMT in 40– 100%. Conclusions. Our findings suggested a non‐linear relationship between OS and MGMT promoter methylation, which implies a varying magnitude of prognostic effect across values of MGMT promoter methylation by pyrosequencing in newly diagnosed IDH wild‐type glioblastoma patients treated with chemoradiotherapy
    • …
    corecore